;

atomic-force-microscopeResearchers at IIT-KGP use Atomic Force Microscope to directly observe water pathways in rocks

The KGP Chronicle (June 4, 2021)

A new approach for direct visualization of nanoscale waterways in rocks using the Atomic Force Microscope and its consequence on water percolation

The researchers use Atomic Force Microscope to directly observe the width and the physical nature of grain boundary domains in rocks on the nanoscale for the first time and this study is among very few in the world that have applied this technique to geological samples, and the first of its kind in India.

In a recent study, a team of researchers led by Prof Saibal Gupta, Professor of Geology and Geophysics Department and Prof Rabibrata Mukherjee, Professor of Chemical Engineering Department along with the research scholars Ritabrata Dobe and Anuja Das from the Department of Geology & Geophysics and Chemical Engineering respectively, for the first time, have corroborated that systematic changes in grain boundary morphology in quartzite samples metamorphosed at different metamorphic grades can be directly visualized using Atomic Force Microscopy (AFM) which allows comparatively easy, high magnification imaging and precise width measurements. The research has been published in the reputed journal Scientific Reports, published by Nature publishing group.

 “The results of the study show that quartzites deformed and metamorphosed at lower grades have wider grain boundaries with voids along the channels and at triple junctions and a much lower proportion of bridges compared to those that are deformed at higher grades. The latter have narrower channels, no voids along these channels, and an abundance of periodically arranged bridges oriented at right angles to the length of the boundary”, said Prof Gupta. “This study also reveals that grain boundary character changes with metamorphic temperature, thereby controlling the extent of water percolation through quartz-bearing rock in the Earth’s crust at depth”. (Read More)